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The concept of ‘drift’, which has been exploited in many high Reynolds number and
inviscid flow problems, is here applied to examine transport by a spherical viscous
droplet (of radius a) moving in a Stokes flow.

In an unbounded flow, the velocity in the direction of translation of a spherical
droplet is positive everywhere because streamlines, in the fluid frame of reference,
‘close’ at infinity. Fluid particles are displaced a positive distance, X, forward,
which is expressed in terms of the initial distance from the stagnation streamline
ρ0. Asymptotic expressions are developed for X in the limits of ρ0/a � 1 and
� 1. The nature of the singularity of the centreline displacement changes from
O(−a log(ρ0/a)) to O(a2/ρ0) as the viscosity of the droplet, compared to the ambient
fluid, increases. By employing a mass-conservation argument, asymptotic expressions
are calculated for the partial drift volume, Dp , associated with a circular material
surface of radius ρm which starts far in front of a droplet that translates a finite
distance. Since the velocity perturbation decays slowly with distance from the
droplet, Dp tends to become unbounded as ρm increases, in contrast to inviscid
flows.

The presence of a rigid wall ensures that the velocity perturbation decays sufficiently
rapidly that fluid particles, which do not lie on the stagnation streamline, are displaced
a finite distance away from the wall. The distortion of a material surface lying a
distance hL above a wall, by the droplet, starting a distance hS from the wall and
moving away, is studied. The volume transported away from the wall, calculated
using a multipolar flow approximation, is Dp = πh2

La(3λ + 2)/(λ + 1), and is weakly
dependent on the starting position of the droplet, in accordance with numerical results.
When the material surface is close to the wall (hL/a � 1), the volume transported
away from a wall is significantly smaller than for inviscid flows because the no-slip
condition on the rigid wall tends to inhibit ‘scouring’. When the material surface is far
from the wall (hL/a � 1), the viscously dominated flow transports a larger volume
of fluid away from the wall because the flow decays slowly with distance from the
droplet.

These results can be generalized to arbitrarily shaped bodies, since the transport
processes are dominated by the strength of the Stokeslet. The effect of boundaries
and inertia on fluid transport processes is briefly discussed.
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Figure 1. Schematic showing the deformation of a material surface by a translating body.
The fluid particle trajectories indicated conform to the case of unbounded viscous flows, where
there is no reflux component.

1. Introduction
Bubbles, particles and vortices moving near boundaries (such as a rigid wall or free

surface) enhance heat and mass transfer processes. For instance during pool boiling,
vapour bubbles grow at nucleation sites on heating elements and detach when the
buoyancy force exceeds the surface tension force keeping the bubbles pinned. As
vapour bubbles rise they transport a proportion of the thermal boundary layer into
the colder ambient fluid, which significantly enhances the heat transfer coefficient
(Forster & Greif 1959). In the context of sediment transport, saltating sand particles
hopping along the surface of a soil resuspend dust through a mixture of hydrodynamic
and ballistic mechanisms (Eames & Dalziel 2000). As the sand particles move away
from the rigid boundary, they transport resuspended dust particles in their wake away
from the wall (Owen 1980).

In order to quantify the ability of bodies to permanently transport fluid from one
place to another, Darwin (1953) developed, for potential flows, the concept of the
drift volume. Darwin (1953) considered how a body moving in a straight line in
an unbounded flow permanently deforms a material surface, which is initially far
in front of the body (see figure 1). Darwin defined the drift volume, D, to be the vol-
ume formed between the initial and final position of the material surface. In the
limit of the body starting infinitely far from the surface and moving off to infinity,
the drift volume is D = CmV , where V is the volume of the body and Cm is the
added mass coefficient. The added mass coefficient is a function of the body geometry
and takes a value of 1 for a cylinder and 1

2
for a sphere. There are a number of

subtle mathematical qualifiers for Darwin’s result to be valid, which are discussed by
Benjamin (1986) and Eames, Belcher & Hunt (1994).

When a potential flow is bounded by vertical walls, the continuity ensures that
there is a return flow or reflux. The deformation of a material surface initially
spanning the channel, by a translating body, consists of two distinct components: a
localized drift (positive displacement) component where the body passes, and a non-
local reflux (negative displacement) component. The return flow or reflux created by
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rising bubbles is chiefly responsible for the hindered rise speed of bubbles and the slip
velocity between the gas and liquid phases (Kowe et al. 1988). Bush & Eames (1998)
examined the fluid transport by ‘planar’ high Reynolds number bubbles rising in a
Hele-Shaw cell, and observed good agreement between measured and predicted drift
volumes. Further, an experimental study of the fluid transported by two-dimensional
dipolar vortices (moving in a rotating tank) by Eames & Flor (1998) showed good
agreement between measurements of the drift volume and Darwin’s (1953) prediction.
These experiments underline the practical significance of estimating drift volumes.

In the experimental studies described above, the influence of shed (or wake) vorticity
is negligible because it is rapidly dissipated between the channel walls in the Hele-
Shaw configuration, or is entrained by the vortex. In both examples, wake vorticity is
also dramatically reduced by the significant straining motion near the rear stagnation
point (Hunt & Eames 2002), so that the downstream flow is essentially irrotational.
However, in general, wake vorticity has a significant impact on the displacement
field because it sets up a finite volume flux Q downwind of the body. When the
Reynolds number of the wake is large, the volume flux associated with the velocity
deficit is related to FD , the drag force on the body, through Q =FD/ρdU (Betz
1925), where ρd is the fluid density and U the flow speed. Thus the drift volume
associated with trailing vorticity or downwind velocity increases with downwind
distance, and Darwin’s result is no longer valid. The impact of vorticity on the
displacement field and drift volume has been studied in relatively few cases. Griffith
(1986) studied numerically the deformation of material surfaces by a viscous thermal
rising in an unbounded flow, and found that the volume displaced forward was
infinite.

In addition to providing a means of quantifying the drift volume or mass flux
associated with translating bodies, studying the displacement of fluid particles and
material surfaces enables a Lagrangian coordinate system or framework to be
developed. Such a framework permits a physical understanding and closed-form
expressions for nonlinear problems – particularly high Reynolds number flows – such
as the rapid distortion of turbulence (Hunt 1973) and in multiphase flows (see the
review by Magnaudet & Eames 2000), where the distortion of vortical elements is
related to the distortion of fluid lines/surfaces through Cauchy’s result.

One reason this technique has not been more widely adopted for viscous flow
problems is that the details of the displacement field have not been calculated in a
rigorous manner. As indicated, the influence of vorticity on the displacement field is
significant and fundamentally changes Darwin’s result. As we shall also show, the
influence of bounding surfaces must also be considered because they change how
rapidly the velocity perturbation decays in the far field. The paper is structured as
follows: the Stokes flow past a spherical droplet moving in an unbounded flow is
described in § 2. Asymptotic expressions are then derived for fluid displacement and
drift volumes in unbounded viscously dominated flows, and these results are tested
against numerical simulations. In § 3, the analysis is extended to account for a planar
rigid wall and partial drift volume is shown to tend to a constant value. Conclusions
are drawn in § 4.

2. Fluid displacement and partial drift volume in unbounded flows
The flow u around a spherical droplet fixed in a uniform flow of speed U , expressed

in spherical polar coordinates (r, θ ), is related to the streamfunction Ψ (Batchelor
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1967, p. 79) through

u = (ur, uθ ) =

(
1

r2 sin θ

∂Ψ

∂θ
, − 1

r sin θ

∂Ψ

∂r

)
. (2.1)

The streamfunction describing uniform flow past a spherical droplet is

Ψ = Ur2 sin2 θ

(
−1

2
+

g1a

r
+

d1a
3

r3

)
(2.2)

(see Pozrikidis 1992, p. 207) where g1 and d1 are respectively the dimensionless
strength of the Stokeslet and potential dipole which characterize the exterior flow and
which are determined by λ, the ratio of the internal viscosity of the spherical droplet
to the external fluid viscosity, through

g1 =
1

4

3λ + 2

λ + 1
, d1 = −1

4

λ

λ + 1

(
= 1

2
− g1

)
. (2.3)

The viscous flow past an inviscid bubble and rigid sphere are determined in the limits
of λ → 0, ∞ respectively.

The displacement of fluid particles by the flow past a spherical droplet is studied
analytically by developing asymptotic expressions for displacement which are valid
for particles starting close to, and far from, the stagnation streamline. These results
are tested numerically and applied to interpret and calculate the partial drift volume
in unbounded and bounded domains.

2.1. Fluid particle displacement for the flow around a spherical droplet

The displacement of a fluid particle in the direction of translation of a body, X, is
determined by the integrated effect of the component of the velocity perturbation
parallel to the mean flow (in the x-direction) and is defined by

X =

∫ t

0

(U + ux) dt. (2.4)

Fluid particles tend to a distance ρ0 from the centreline far up- and downstream of
the sphere (because of fore–aft symmetry), and this distance is related to the value of
the streamfunction on the corresponding streamline through

ρ2
0 = −2Ψ

U
= r2 sin2 θ

(
1 − 2g1a

r
− 2d1a

3

r3

)
. (2.5)

The displacement (2.4) resulting from the advection of a fluid particle from an angular
position θ = θi to downwind position θf may be recast, using dx = r dθ , exactly as

X(θf , θi, ρ0) =

∫ θf

θi

ar

[
g1r

2(2 − sin2 θ) + d1a
2(2 − 3 sin2 θ)

(r3 − g1r2a + d1a3) sin θ

]
dθ. (2.6)

Lighthill (1953) calculated analytically the displacement of fluid particles due to the
inviscid flow past a sphere, and this methodology is applied here (see also Eames
et al. 1994).

2.1.1. Asymptotic expression for X(θf , θi, ρ0) far from centreline

Far from the centreline (ρ0/a � 1), the streamlines are essentially parallel and the
radial position of a fluid particle moving a streamline, calculated from (2.5), is

r =
ρ0

sin θ

(
1 +

g1a sin θ

ρ0

+
g2

1a
2 sin2 θ

2ρ2
0

+ O

(
a3

ρ3
0

))
. (2.7)
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Figure 2. Schematic showing the notation employed to calculate asymptotic expressions for
the fluid particle displacement close to the stagnation streamline.

Substituting (2.6) into (2.4), expanding the integrand in powers of (ρ0/a)−1 and
integrating, we obtain the leading-order contribution to the displacement,

X(θf , θi, ρ0) =

[
g1a

(
cos θ + 2 log

(
tan 1

2
θ
))

+
g2

1a
2

ρ0

[
3
2
θ + 1

4
sin 2θ

]]θf

θi

. (2.8)

The fluid particle displacement is dominated by the strength of the Stokeslet because
the potential dipole contribution decays so rapidly with distance from the droplet.
As θi → 0 or θf → π, the displacement increases and becomes unbounded. The
displacement is positive everywhere, in contrast to inviscid flows, because the
streamlines (in the frame moving with the droplet) close at infinity. The largest
contribution to the displacement is independent of ρ0, and provides the bulk
contribution to the partial drift volume, as we shall see later.

2.1.2. Asymptotic expression for X(θf , θi, ρ0) close to the centreline

The displacement of a fluid particle which lies initially close to the centreline
(ρ0/a � 1) is calculated by considering separately contributions from transport along
the streamlines A1A2, B1B2 and C1C2 (see figure 2) and matching the asymptotic
expansions over an intermediate region. The flow around a viscous droplet (where
0 � λ < ∞) differs significantly from that around a rigid sphere (where λ = ∞)
because there is slip velocity on the sphere’s surface. This fundamentally changes the
nature of the singularity in the centreline fluid displacement. We treat the case of a
viscous spherical droplet (where λ is finite) and rigid sphere (where λ = ∞) separately.

Along A1A2 and C1C2, the streamline is described to leading order by (2.7). The
contribution to displacement by a fluid particle being advected from (ri, θi) to (rm, θm)
(from A1 to A2) is (from (2.4))

XA1A2
=

∫ rm

ri

U + ux

ur

dr =

∫ ri

rm

a(2g1r
2 + 2d1a

2)

(r − a)(r2 + 2d1ra + 2d1a2)
dr + O(ρ0). (2.9)

When λ is finite, the denominator in the integrand of (2.9) has only one root, r = a.
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The first term in the expansion is[
a

1 + 4d1

log(r − a) +
2g1(1 + 4d1) − 1

2(1 + 4d1)
log(r2 + 2d1ar + 2d1a

2)

+
2g1(1 − d1) − (1 + d1)/(1 + 4d1)

2
(

− 2d1 + d2
1

)1/2
log

(
r/a + d1 −

√
−2d1 + d2

1

r/a + d1 +
√

−2d1 + d2
1

)]ri

rm

. (2.10)

A similar expression may be calculated for XC1C2
, with ri replaced by rf .

On the streamline B1B2 adjacent to the droplet,

r = a +
ρ2

0

(1 + 4d1)a sin2 θ
+ O

(
ρ3

0/a
2
)
. (2.11)

The displacement contribution as a fluid particle is advected from (rm, θm) to (rm,

π − θm) is

XB1B2
=

∫ π−θm

θm

a
1 − (g1 + 3d1) sin2 θ

1
2
(1 + 4d1) sin θ

dθ + O(ρ0). (2.12)

On integration it yields

XB1B2
= − 4a

1 + 4d1

log
(
tan 1

2
θm

)
− 4(g1 + 3d1)

1 + 4d1

a cos θm + O(ρ0). (2.13)

The total displacement is obtained by adding together these individual con-
tributions,

X(θf , θi, ρ0) = XA1A2
+ XB1B2

+ XC1C2
, (2.14)

and using the matching condition (from (2.11)), rm = a + ρ2
0/(1 + 4d1)aθ2

m. The total
displacement is

X(θf , θi, ρ0) =

[
a

1 + 4d1

log(r/a − 1) +
2g1(1 + 4d1) − 1

2(1 + 4d1)
log(r2/a2 + 2d1r/a + 2d1)

+
2g1(1 − d1) − (1 + d1)/(1 + 4d1)

2
(

− 2d1 + d2
1

)1/2
log

(
r/a + d1 −

√
−2d1 + d2

1

r/a + d1 +
√

−2d1 + d2
1

)]rf ,ri

− 4a

1 + 4d1

log

(
ρ0

2a
√

1 + 4d1

)
− 4(g1 + 3d1)a

1 + 4d1

. (2.15)

Close to the centreline, the displacement is dominated by a weak logarithmic
singularity, arising from the stagnation points on the surface of the droplet. The
nature of this singularity is similar to inviscid flows past a rigid body. As λ → ∞,
the strength of the potential dipole, d1, tends to − 1

4
and the asymptotic expansion

described above breaks down because the azimuthal velocity tends to zero on the
sphere’s surface. The above calculations are repeated here for λ = ∞. In the deno-
minator of (2.9), r = a is a double root and

XA1A2
=

14

9
a log

(
rm − a

ri − a

)
− 2a2

3(rm − a)
+

2a2

3(ri − a)
− 1

18
a log

(
rm + 1

2
a

ri + 1
2
a

)
+ O(ρ0).

(2.16)
When λ = ∞, the streamline B1B2 is

r = a +

√
2

3

ρ0

sin θ
+

1

9

ρ2
0

a sin2 θ
+ O

(
ρ3

0

/
a2

)
. (2.17)
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Notice the occurrence of the O(ρ0) term which arises from the no-slip condition on
the surface of the sphere. The contribution from the streamline adjacent to the rigid
sphere is determined by substituting (2.17) into (2.6):

XB1B2
=

√
2

3

a2

ρ0

(π − 2θm) + 28
9
a log

(
tan 1

2
θm

)
− 2a cos θm + O(ρ0). (2.18)

Applying the matching process described before, we find the total displacement close
to the centreline is

X(θf , θi, ρ0) = 14
9
a log[(ri/a − 1)(rf /a − 1)] − 2(rf + ri − 2a)a

3(ri − a)(rf − a)

− 28
9
a log

(√
2

3

ρ0

2a

)
+

√
2

3

πa2

ρ0

+ 1
9
a log

(
3
2

)
− 2a + O(ρ0). (2.19)

Close to the centreline, the fluid particle displacement is dominated by a ρ−1
0

singularity,

X(θf , θi, ρ0) →
√

2

3

πa2

ρ0

, (2.20)

associated with the no-slip condition on the surface of the sphere.

2.2. Partial drift volume

The drift volume formed by an infinitely large material surface starting infinitely far
in front of a steadily translating body is not well-defined. The approach adopted
by Eames et al. (1994) is applied here, where the ‘partial’ drift volume formed by
a material surface of (finite) radius ρm, starting a finite distance in front of a rigid
body, is calculated. The volume formed by the deformation of a material surface,
initially subtended by an angle θi from the x-axis and advected downstream so that
it is finally subtended by an angle θf (see figure 3), is defined as

Dp(θf , θi, ρm) =

∫ ρm

0

X2πρ0 dρ0. (2.21)

Insight may be obtained by applying the geometrical argument originally developed
by Yih (1985) to evaluate drift volumes in potential flows. Figure 3 shows a schematic
of a material surface of radius ρm, initially subtended by an angle θi , which is advected
by a uniform stream past a rigid body. From the conservation of mass, the partial
drift volume is related to A, the volume between the laterally displaced streamlines
and their unperturbed positions, and V , the volume of the body, through

Dp = A − V, (2.22)

when the body has passed through the material surface. For potential flows, A tends
to Ωµ/U , as θi → 0, θf → π and ρm → ∞, where Ω = 2π, 4π in planar and
three-dimensional flows respectively and µ is the dipole moment characterizing the
far-field flow. Darwin’s original result is then recovered,

Dp =
Ωµ

U
− V = CmV. (2.23)

(Here Taylor’s 1928 result µ = (1 + Cm)UV/Ω is employed). For viscous flow past a
rigid body, A is determined by ρm, θi and θf and does not tend to a constant value
as ρm/a → ∞.
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Figure 3. Schematic showing a geometrical argument for the evaluation
of the partial drift volume.

In a viscous unbounded flow, the volume enclosed by a displacement streamline
tube (of radius ρm) is

A =

∫ xf

xi

π
(
r2 sin2 θ − ρ2

m

)
dx (2.24)

(where r is given by (2.7)) and to leading order is evaluated to be

Dp = 2g1πρ2
ma log

(
tan 1

2
θf

tan 1
2
θi

)
+ 2g2

1πa2ρm(θf − θi) − V. (2.25)

This is the viscous flow equivalent of Darwin’s proposition. As θf → 0 and θf → π,
the partial drift volume becomes unbounded. This is because the flow decays so slowly
in the far field that an infinite volume of fluid is transported in the direction in which
the body translates. From (2.8), we see that to leading order, Dp ∼ πρ2

mX(θf , θi, ρm),
because the contribution from the Stokeslet dominates the displacement field. It is
important to contrast these results with the calculations of Eames et al. (1994) who
found that the partial drift volume tends to a constant value for inviscid flows.

2.3. Numerical results

To test the asymptotic expressions, the fluid particle displacement was calculated
numerically by integrating

dx

dt
= ux(x, y),

dy

dt
= uy(x, y), (2.26)

subject to the initial condition (x, y) = (x0, y0) at time t = 0. The initial position of
the fluid particles is related to the Lagrangian variable ρ0 through (2.5).

Figure 4 shows typical trajectories of fluid particles (in the frame moving with the
mean flow) which are placed an initial distance x0/a = −2.5 and 50 upstream of
the sphere; the sphere moves through a distance of 100a. In contrast to potential
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Figure 4. Trajectories of fluid particles which start a distance x0 in front of the sphere where
x0 = 50a and x0 = −2.5a in (a) and (b) respectively. The particles are followed for a time
100a/U as the sphere moves from left to right. The time difference between consecutive
diamonds is 5a/U .

flows, the fluid particles are all displaced forward by the viscous flow and there is
no negative displacement or reflux (see Eames et al. 1994 for a comparison with the
results from inviscid flows). The fluid displacement is also significantly larger than for
inviscid flows, and the displacement decays slowly with ρ0.

Figure 5 shows a comparison between asymptotic expressions and numerical results
for the distortion of a material surface by a rigid sphere and inviscid bubble. The
material surface starts a distance x0 = 50a in front of the sphere, and the sphere
moves through a distance 2500a. The near- and far-field expressions for displacement
remain good approximations to the displacement field, giving 10% errors for both the
near- and the far-field displacements, up to O(2.0a) and down to O(2.0), respectively.
Figure 5 illustrates the change in the singularity of the centreline displacement, from
∼ −a log(ρ0/a) to ∼ a2/ρ0 as λ increases. From figure 5, we see that the far-field
expression (2.8) provides a reasonable prediction of the near-field behaviour for flow
past a rigid sphere. This is because (2.8) is dominated by 3πg2

1a
2/2ρ0 ≈ 2.65a2/ρ0,

when truncated after ρ−1
0 , which is close to (2.20) or X ∼ 2.56a2/ρ0, as ρ0/a → 0.
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Figure 5. Comparison between numerical calculations of fluid particle displacement and
asymptotic expressions, for a rigid sphere and inviscid bubble. The particles start a distance
x0 = 50a in front of the sphere and are advected for a time 2500a/U . Numerical results are indi-
cated by symbols: +, an inviscid bubble (λ = 0); ×, a rigid sphere (λ = ∞). The curves describe
the asymptotic results: the full curve denotes (2.8); the dashed curves denote (2.15) and (2.20)
for λ = 0 and ∞ respectively.

Figure 6 shows a comparison between the asymptotic expression for the partial
drift volume associated with a rigid sphere and inviscid bubble, as a function of
the angular position of the material surface. Both the initial position of the material
surface and its equivalent initial radius ρm are indicated in the figure. There appears
to be relative good agreement between the asymptotic results (2.25) and the numerical
results. Comparison with the far-field asymptotic result suggests that the partial drift
volume scales as X(θf , θi, ρm)πρ2

m, with the centreline displacement making a less
significant contribution to the partial drift volume.

3. Fluid displacement and partial drift volumes in bounded flows
The presence of a rigid wall (located at x = 0) has a significant influence on the

flow, reducing the far-field flow from an O(aU/r) perturbation (where r is the distance
from the droplet) to O(a3U/r3) or O(a2U/r2) (when the body moves perpendicular or
parallel to the wall respectively). Consequently fluid particles (which do not lie on the
attached streamline) are displaced a finite distance. For the case of a sphere moving
away from a wall, the displacement decays sufficiently rapidly from the sphere that
the partial drift volume is also finite, and this is the problem we explore in more
detail. The centre of the sphere is a distance h = hS + Ut (for t > 0) from the wall
and moves away at a constant velocity U . The deformation of a material surface,
which lies a distance hL above the wall, and the corresponding partial drift volume
are considered.
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Figure 6. The variation of the normalized partial drift volume, Dp/g1πρ2
ma, with angular

position θ (see figure 3). The drift volume is calculated by advecting a circular material
surface, of initial radius ρm = 100a, past the sphere. The surface starts an initial distance x0 in
front of the sphere, and the symbols correspond to: +, an inviscid bubble (λ = 0); ×, a rigid
sphere (λ = ∞). The initial position of the material surface, θi , can be determined from the
intercept of the curves with the θ -axis. The curves correspond to (2.25).

The flow generated by a rigid sphere (λ = ∞) moving away from a rigid wall was
calculated by Brenner (1961) as a series expressed in bispherical polar coordinates
(Appendix A). When the sphere is far from the wall, the leading-order flow is described
by a multipolar expansion, expressed in terms of Stokeslets and dipoles, which
approximately satisfies the boundary condition on the wall and sphere. Although
the kinematic boundary condition on the wall is satisfied exactly, there is a weak
tangential velocity along the wall of O(Ua3/h3) which has a negligible impact on the
displacement field when h is large (see Appendix B). An indication of the accuracy
of the two descriptions is the error in the kinematic boundary condition on the
sphere’s surface, which is discussed in Appendix B. The advantage of the multipolar
approximation is that it can be applied to describe the flow generated by a droplet
moving away from the wall.

3.1. Fluid displacement away from a rigid wall

The displacement of a fluid particle away from a wall is the integral of the velocity
perturbation,

lim
t→∞

X(t) =

∫ ∞

0

ux(hL + X, y, t) dt. (3.1)

As with the inviscid flow generated by a translating body, the displacement field is
only a function of the starting and finishing position of the sphere, and independent
of U because the flow is reversible in time.
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When the sphere is far from the wall, the flow is approximately described by a
multipolar approximation:

ux(x, y, t) = g1aU [S1(x − hS − Ut, y) − S1(x + hS + Ut, y) − 2hxD1(x + hS + Ut, y)]

+ d1a
3U [D1(x − hS − Ut, y) − D1(x + hS + Ut, y)] . (3.2)

(See Appendix B for the notation.) Far from the sphere and the stagnation streamline,
the flow decreases sufficiently rapidly that the displacement parallel to the wall is
negligible and X � hL. The permanent displacement perpendicular to the wall is esti-
mated to be

lim
t→∞

X(t) ≈
∫ ∞

0

ux(hL, ρ0, t) dt

= −2g1a log

(
hS − hL +

√
(hS − hL)2 + ρ2

0

hS + hL +
√

(hS + hL)2 + ρ2
0

)

+

(
g1a +

d1a
3

ρ2
0

)
(cos θ− − cos θ+) − d1a

3

ρ2
0

(cos3 θ− − cos3 θ+)

− g1a

(
4(hS + hL)2hL + 2hLρ2

0

((hS + hL)2 + ρ2
0 )

3
2

− 4h2
L

2ρ2
0

(cos θ+ − cos3 θ+)

)
, (3.3)

where cos θ± = (hS ± hL)/((hS ± hL)2 + ρ2
0 )

1/2 and (hL + X, ρ0) is the final position
of the fluid particle. The last two terms on the right-hand side of (3.3) correspond
to contributions from the image Stokeslet doublet and potential dipole required to
approximately satisfy the no-slip condition on the wall, while the remaining terms
(which can be identified from (2.8)) are the contributions from two separating spheres.

Asymptotic expressions for the displacement field close to the centreline are

lim
t→∞

X(t) ∼




−2g1a log

(
hS − hL

hS + hL

)
− 4hLg1a

hS + hL

(hS > hL)

−4g1a log

(
ρ0

2
√

h2
L − h2

S

)
− 4hLg1a

hS + hL

− 2g1a (hS < hL),

(3.4)

while far from the centreline,

lim
t→∞

X(t) →
4
3
g1h

3
La + 2d1a

3hL

ρ3
0

. (3.5)

According to the multipole approximation, the displacement limt→∞ X is positive
everywhere. When the sphere starts above the material surface (hS > hL + a), the
displacement field consist of a near-field (ρ0 � O(hL)) and a far-field (ρ0 � O(hL))
component described by (3.4) and (3.5) respectively. When the sphere passes through
the material surface (hS � hL + a), the displacement field consists of an inner field
ρ0 � O(a) where the singularity of the displacement is O(a2/ρ0) or O(−a log(a/ρ0))
(depending on whether the sphere is rigid or viscous) which is not captured by (3.4),
an intermediate region (a � ρ0 � O(hL)) and a far field (ρ0 � O(hL)) described
by (3.4) and (3.5) respectively. Thus, we can anticipate that (3.3) underpredicts the
centreline displacement. Further, since the no-slip condition on the wall is not satisfied
exactly in the multipolar approximation, it can also be anticipated that the numerical
calculations of the displacement field, utilizing (3.2), would tend to over-estimate X,
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far from the centreline. However, the underlying scaling, suggested by (3.5), that the
displacement far from the centreline is weakly dependent on hS , is still preserved.

3.2. Partial drift volume

Fluid particles are ultimately displaced away from the wall and the partial drift
volume is then defined as

Dp =

∫ ∞

0

lim
t→∞

X(t)2πρ0 dρ0. (3.6)

The partial drift volume is finite because the centreline displacement has an integrable
singularity and X ∼ O(h3

La/ρ3
0 ) in the far field. (Note, in contrast to the displacement

by the inviscid flow past a sphere moving away from a wall, that there is no reflux,
so it is not necessary to distinguish between drift and reflux volumes, as identified by
Eames, Hunt & Belcher 1996.)

An estimate of the partial drift volume using the multipolar approximation for the
displacement field (3.3), gives

Dp = 4g1πh2
La =

3λ + 2

λ + 1
πh2

La, (3.7)

independent of hS and proportional to the strength of the Stokeslet characterizing the
flow around the droplet. This scaling could be anticipated from (3.5), since X ∼ O(ag1)
over a radial distance of O(hL), from which Dp ∼ g1h

2
La.

As described previously, the contribution from the local deformation due to the
sphere moving through the material surface (in the region ρ0 � O(a)) is ignored in
(3.3) and so we anticipate that Dp calculated numerically is slightly larger than (3.7).
When the sphere passes through the material surface (hS � hL + a) and hS � a, the
contribution from the near-field displacement field increases with hS .

3.3. Numerical results

The flow generated by a rigid sphere (where λ = ∞) translating away from a rigid
wall was calculated using Brenner’s (1961) series expansion (Appendix A), while
a multipolar approximation was applied for a viscous droplet (where 0 � λ < ∞,
Appendix B).

Some caveats are required regarding the numerical calculations. The convergence
of Brenner’s solution is slow as h increases (and round-off errors increase), so
that the integration is terminated at h = 1000a. Comparison with the multipolar
approximation suggested that this gave an error of less than 1% in calculations of the
partial drift volume. Since the multipolar approximation does not satisfy exactly
the boundary conditions on the sphere, marked material surfaces were chosen to
start from a radial distance of 0.8a from the centreline (for hS > hL + a) and 0.5a

from the sphere (for |hS − hL| � a), so that the approximation did not lead to
particles entering the sphere. This region was found by trial and error so that even
when hS = a, the approximation could be applied. In fact this region could be
significantly reduced as hS is increased because of greater accuracy of the multipolar
approximation, but for consistency this region was fixed. In the calculation of the
partial drift volume, a material surface of initial radius 100a was considered; beyond
this distance the displacement varies as ∼ h3

La/ρ3
0 , and this was exploited to calculate

the additional contribution to Dp from outside this region. The radius of 100a
was chosen to complement the truncation of the integration beyond a distance
h = 1000a.
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Figure 7. The distortion of material surfaces, initially at hL/a = 1, 4 and 8, by a rigid sphere
starting at hS/a = 4 and moving to infinity. The numerical solution using Brenner’s (1961)
series is represented by +; the dashed and full curves represent numerical solutions using the
multipolar approximation and (3.3). The difference between the dashed and full curves, for
large ρ0/a, is due to the fact that the integration in (3.1) is terminated at t = (1000a − hS)/U .

Figure 7 shows a comparison between the distortion of a material surface for
hS/a = 4.0 for a rigid sphere (λ = ∞) for increasing values of hL/a calculated using
Brenner’s flow description, the multipolar approximation and (3.3). Equation (3.3)
underpredicts the displacement field close to the centreline because the approximation
that X � hL breaks down. However, the displacement field is determined by the
integrated effect of the velocity field, which is why the multipolar description still
appears to adequately capture the distortion of the material surfaces even though this
approximation is quite poor when the rigid sphere starts on the wall.

Figure 8 shows a comparison between Dp calculated numerically for a rigid
sphere moving away from a rigid wall (where g1 = 3

4
), and the analytical result

(3.7), for a fixed value of hS and increasing values of hL. In figure 8, Dp is
calculated using Brenner’s series expansion and a multipolar approximation; both
show good agreement with (3.7). When the sphere is initially above the material
surface (hL > hS + a), the difference between the numerical result and (3.7) is less
than 10%, and this difference decreases as hL increases. Close to the centreline,
(3.3) underpredicts X, and therefore numerical calculations for Dp in figure 8(a) lie
above the analytical prediction (3.7). As hS increases, the difference between the full
numerical solution and (3.7) increases. An analysis of the results for unbounded flows
indicates that this introduces terms at most of O(hSa

2), so that even as hS increases,
the main analytical result remains a good prediction of the partial drift volume.
Numerical calculations of the influence of λ on Dp/g1πh2

La (not shown here), utilizing
the multipolar flow description have shown that that rigid spheres displace slightly
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Figure 8. Comparison between numerical calculations of the partial drift volume, Dp , for a
rigid sphere (λ = ∞, g1 = 3

4
) moving away from a wall and the asymptotic result Dp = 4g1πh2

La.
Brenner’s series expansion for the flow is used in (a), while the multipolar approximation is
applied in (b). The symbols correspond to hS/a = 1 (+), 4 (×), 8 (	) and 16 (�).

more fluid away from the wall than low-viscosity droplets, than can be accounted for
by (3.7). This is because (3.3) does not correctly account for displacements close to the
centreline when hL � hS . From figure 8, we can conclude that the volume transported
away from a rigid wall is weakly dependent on the initial starting position of the
body, and depends on the initial position of the material surface.

4. Concluding remarks
In this paper we have presented a detailed study of fluid displacement by the Stokes

flow past a spherical droplet in an unbounded flow and in the presence of a rigid
wall. Since the transport process is dominated by the strength of the Stokeslet, g1,
these results can be readily extended to arbitrarily shaped bodies.

In an unbounded flow, the partial drift volume becomes unbounded as the droplet
translates an infinite distance, or as the size of the material surface increases. All fluid
particles are displaced forward because the streamlines (in the frame moving with any
translating body) close at infinity, so there is no reflux field. The perturbation flow
decays so slowly with distance from the body that fluid particles are displaced an
infinite distance and Dp is unbounded. The presence of rigid bounding walls ensures
that the velocity decays sufficiently rapidly that fluid particles (which do not lie on
a stagnation streamline) are only displaced a finite distance. When a body moves
parallel to a rigid wall, fluid particles are displaced a finite distance; however, there
is still no reflux component to the displacement field because the streamlines (in
the frame moving with the body) close at infinity. This tells us that the subtle mass
conservations argument employed by Batchelor (1972) to estimate the mean settling
speed of rigid spheres (and rendering certain integrals finite) requires that the flow
must be bounded not just by sidewalls, but also by a top and bottom, in order that
a reflux field is generated.

When a body moves perpendicular to a rigid wall, it transports a finite volume
away from the wall, which is principally determined by the initial position of the
material surface and rather weakly dependent on the starting position of the sphere.
When a material surface is close to the wall (hL/a � 1), the effect of viscous forces
tends to inhibit the scouring action because of the no-slip condition imposed on the
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wall, so that the drift volume is much smaller than for high Reynolds number and

inviscid flows, where Dp ∼ 4πa3hL/3
3
2 hS (Eames et al. 1996). But, when the material

surface is initially far from the wall (hL/a > O(1)), the viscous flow transports a much
larger volume away from the wall (compared to inviscid flows, where Dp ∼ 2πa3/3),
because the flow perturbation decays much slower with distance from the sphere.
These results suggest that viscosity significantly reduces the heat transfer coefficient
in pool boiling, both by reducing the rise speed of vapour bubbles and inhibiting the
scouring action of the rising bubbles (Forester & Greif 1959).

The results in this paper may be applied to develop a Lagrangian coordinate system,
expressed in terms of the displacement field (X, ρ0). Such a framework is potentially
useful in a number of low Reynolds number flow problems, such as dilute polymer
flows past rigid bodies. In such problems, the constitutive equations are expressed in
terms of a Lagrangian evolution equation describing the stretching and relaxation of
polymer threads (Harlen, Rallison & Szabo 1995). An alternative approach, developed
by Binous & Phillips (1999) is to follow a large number of polymer threads (modelled
as beads connected by elastic threads) as they are advected past rigid bodies. The
Lagrangian framework developed in this paper may provide some more insight into
the stretching and alignment of polymer threads with the velocity of the body, when
the polymer relaxation time is long compared to the advective timescale past the
body. A future goal will be to attempt to adapt this Lagrangian formulation to this
non-trivial problem.

Beyond a distance aRe−1 from the body, where Re = Ua/ν is the Reynolds number
characterizing the flow past the body, inertial forces are important. The influence of
inertia on the displacement field can be studied using an Oseen correction to the
far-field flow (Lamb 1932), and applying the methodology developed in this paper.
In an unbounded flow, the dependence of the partial drift volume on the radius
of the material surface is much weaker (varying as (8g1ρma2/Re)[tan 1

2
θf − tan 1

2
θi]),

but it still tends to become unbounded as the body translates an infinite distance.
Again, this is related to the slow decay of the perturbation flow and the presence
of a constant volume flux downstream of the body. However, in a bounded flow,
additional physical processes, such as vorticity annihilation (Hunt & Eames 2002),
are present which ultimately means that the flow is irrotational far downstream. Many
of these processes still need support from detailed experimental observations before
a complete physical picture of the coupling between the motion of particles and its
global impact on the fluid flow, interpreted through the displacement field, can be
quantified.
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Appendix A
Brenner (1961) developed a series solution describing quasi-steady Stokes flow past

a rigid sphere moving perpendicular to a wall, using bipolar spherical coordinates.
Solutions corresponding to rigid and shear-free walls were derived by Brenner (1961),
although here we discuss only the case of a rigid wall. The bipolar coordinates (ζ, η)
of a point in a meridian plane are related to the Cartesian coordinates (x, y) through
x = c sin η/(cosh ζ −cos η) and y = c sinh ζ/(cosh ζ −cos η). The surface of the sphere
and rigid wall correspond to ζ = α and ζ =0 respectively. The centre of the sphere lies
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at a distance h from the plane x =0, where h=c coth α or α = log(h/a+
√

(h/a)2 − 1).
The streamfunction, Ψ , satisfies the biharmonic equation ∇2(∇2Ψ ) = 0 whose general
solution is

Ψ =
1

(cosh ζ − µ)
3
2

∞∑
n=1

(
an cosh

(
n − 1

2

)
ζ + bn sinh

(
n − 1

2

)
ζ

+ cn cosh
(
n + 3

2

)
ζ + dn sinh

(
n + 3

2

)
ζ
) (

Pn−1(µ) − Pn+1(µ)

2n + 1

)
, (A 1)

where µ = cos η. Brenner (1961) derived the coefficients an, bn, cn, dn required to
satisfy the no-slip condition on the wall and sphere’s surface:

cn = −an =
sinh4 αn(n + 1)(2n + 1)√

2
(
4 sinh2

(
n + 1

2

)
α − (2n + 1)2 sinh2 α

)
and

dn = −
(

2n − 1

2n + 3

)
, bn = − sinh2 αn(n + 1)√

2(2n + 3)

(
2 sinh(2n + 1)α + (2n + 1) sinh 2α

4 sinh2
(
n + 1

2

)
α − (2n + 1)2 sinh2 α

− 1

)
.

Appendix B
The flow past a spherical droplet moving parallel to the x-axis in an unbounded

flow can be expressed in terms of a Stokeslet and potential dipole (Pozrikidis 1992,
p. 202):

ui(x) = g1aUSi(x) + d1a
3UDi(x), (B 1)

where g1 and d1 are given by (2.3), and i = 1, 2 correspond to the x- and y-axis
respectively. The flows due to the Stokeslet and potential dipole are

Si(x) =
δ1i

|x| +
x1xi

|x|3 , Di(x) = − δ1i

|x|3 + 3
x1xi

|x|5 .

An approximate description of the flow around a sphere moving perpendicularly to
a rigid wall may be constructed by adding image singularities (described by Blake
1971) to approximately satisfy the boundary conditions on the wall. We also add
an image contribution of the potential dipole to ensure that far from the wall the
flow approximation in the vicinity of the droplet tends to (B 1) as h/a → ∞. The
approximate description of the flow generated by a sphere at hx̂, which is moving
with speed U , is

ui = g1aU
[
Si(x − hx̂) − Si(x + hx̂) + 2h2Di(x + hx̂) − 2hGSD

i (x + hx̂)
]

+ d1a
3U [Di(x − hx̂) − Di(x + hx̂)], (B 2)

where

GSD
i = x1Di +

(δ1ixi − x1)

|x|3 .

The maximum error in the kinematic condition over the surface of the sphere,
E = max{n̂ · (u − U x̂)/U} = 1.5g1(a/h), is plotted in figure 9 and decreases as h/a
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Figure 9. Maximum error, E = max{n̂ · (u − U x̂)/U}, in the kinematic condition satisfied on
the surface of the sphere, is plotted as a function of h/a. The symbols correspond to Brenner’s
solution, with 10 terms (+) and 30 terms (♦) evaluated in the series (A 1); the full curve
corresponds to the multipolar approximation (B 2).

increases. Under this approximation, the no-slip condition is not satisfied exactly on
the wall, where the slip speed is O(Ua3/h3).
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